miércoles, 7 de mayo de 2008

SISTEMA HELIOCÉNTRICO


La Teoría heliocéntrica fue propuesta por Nicolás Copérnico uno de los astrónomos más importantes de la Historia, con la publicación en 1543 del libro De Revolutionibus, en el cual afirmó que la Tierra y los demás planetas giraban en torno a un Sol estacionario. Esta publicación marcó el comienzo de una revolución en astronomía, al indicar la falsedad de la teoría geocéntrica de Claudio Ptolomeo que consiste en que el Sol, las estrellas y los demás planetas orbitaban a la Tierra. Esta informacion fue extraida de el artículo Sistema geocéntrico en esta misma página.

Sin embargo, fue realmente Aristarco de Samos quien primero propuso esta teoría heliocéntrica.

Copérnico adoptó la idea de una Tierra en movimiento para resolver el problema planetario que, según opinaba, no estaba satisfactoriamente resuelto. En el sistema heliocéntrico resultaba mucho más sencillo realizar el cálculo correcto de las posiciones planetarias, y por ello Copérnico no dudó en romper con una tradición de más de 2000 años de una Tierra en reposo. El heliocentrismo ya había sido descrito en la antigüedad por Aristarco de Samos, quien se había basado en medidas sencillas de la distancia de la Tierra al Sol, que determinaban un tamaño del Sol mucho mayor que el de nuestro planeta. Por esta razón, Aristarco propuso que era la Tierra la que giraba alrededor del Sol y no a la inversa, siendo el primer proponente del modelo heliocéntrico.

SISTEMA GEOCÉNTRICO


La Teoría geocéntrica es una antigua teoría de ubicación de la Tierra en el Universo. Coloca la Tierra en el centro del Universo y los astros, incluido el Sol, girando alrededor de ella (geo: Tierra; centrismo: centro). Fue formulada por Aristóteles y estuvo en vigor hasta el siglo XVI, en su versión completada por Claudio Ptolomeo en el siglo II adC, en su obra El Almagesto, en la que introdujo los llamados epiciclos y deferentes.

Teoría geocéntrica en la actualidad

Algunos fundamentalistas religiosos todavía interpretan sus escrituras sagradas indicando que la Tierra es el centro físico del Universo; esto es llamado geocentrismo moderno. Los Astrólogos, mientras que pueden no creer en geocentrismo como principio, todavía emplean el modelo geocéntrico en su cálculos para predecir horóscopos.

La Asociación Contemporánea para la Astronomía Bíblica, conducida por el físico Dr. Gerhardus Bouw, sostiene a una versión modificada del modelo de Tycho Brahe, que llaman geocentricidad. Sin embargo, la mayor parte de los grupos religiosos en la actualidad, aceptan el modelo heliocéntrico. El 31 de octubre de 1992, el Papa Juan Pablo II rehabilitó a Galileo 359 años despues de que fuera condenado por la Iglesia.

El sistema solar es aún de interés para los diseñadores de planetarios dado que, por razones técnicas, dar al planeta un movimiento de tipo Ptolomeico tiene ventajas sobre el movimiento de estilo Copernicano.

en la teoria geocentrica se creia que la tierra era el centro del universo

ASTRONOMÍA EN EL SIGLO XVI


En 1492 se descubrió América y se amplió de gran forma la navegación, lo que empezó a requerir mejores instrumentos navales, así como una mejoría en las técnicas de cartografía terrestre y estelar, lo que significo un importante estimulo para el estudio de la geografía, la astronomía y las matemáticas.

El siglo XVI supuso un giro drástico en todas las áreas del conocimiento, la literatura y el arte. Después de un milenio oscuro y bastante inculto, Europa volvió su mirada hacia los clásicos, sobre todo, de la antigua Grecia. Es el Renacimiento.

En astronomía, las aportaciones de Nicolás Copérnico supusieron un cambio radical y un nuevo impulso para una ciencia que estaba dormida. Copernico analizó críticamente la teoría de Tolomeo de un Universo geocéntrico y demostró que los movimientos planetarios se pueden explicar mejor atribuyendo una posición central al Sol, más que a la Tierra.

En principio no se prestó mucha atención al sistema de Copérnico (heliocéntrico) hasta que Galileo descubrió pruebas sobre el movimiento de la Tierra cuando se inventó el telescopio en Holanda. En 1609 construyó un pequeño telescopio de refracción, lo dirigió hacia el cielo y descubrió las fases de Venus, lo que indicaba que este planeta gira alrededor del Sol. También descubrió cuatro lunas girando alrededor de Júpiter.

Convencido de que estos planetas no giraban alrededor de la Tierra, comenzó a defender el sistema de Copérnico, lo que le llevó ante un tribunal eclesiástico. Aunque se le obligó a renegar de sus creencias y de sus escritos, esta teoría no pudo ser suprimida.

Desde el punto de vista científico la teoría de Copérnico sólo era una adaptación de las órbitas planetarias, tal como las concebía Tolomeo. La antigua teoría griega de que los planetas giraban en círculos a velocidades fijas se mantuvo en el sistema de Copérnico.

El observador mas importante del siglo XVI fue Ticho Brahe, quien tenía el don de la observación y el dinero para construir los equipos mas avanzados y precisos de su época. Desde 1580 hasta 1597, Tycho observó el Sol, la Luna y los planetas en su observatorio situado en una isla cercana a Copenhague y después en Alemania.

Sus observaciones, que eran las mas exactas disponibles, darían después de fallecido las herramientas para que se pudieran determinar las leyes del movimiento celeste, dadas por su ayudante y uno de los mas grandes científicos de la historia: Johannes Kepler.

Pero el hecho más trascendente del Renacimiento no fueron estos descubrimientos, sinó el cambio de actitud y mentalidad en los científicos. La experimentación empezó a hacerse filosóficamente respetable en Europa, y fue Galileo quien acabó con la teoría de los griegos y efectuó la revolución.

Galileo era un lógico convincente y genial publicista. Describía sus experimentos y sus puntos de vista de forma tan clara y espectacular, que conquistó a la comunidad erudita europea. Y sus métodos fueron aceptados, junto con sus resultados.

Galileo fue el primero en realizar experimentos cronometrados y en utilizar la medición de una forma sistemática. Su revolución consistió en situar la inducción por encima de la deducción, como el método lógico de la Ciencia. Galileo puede considerarse, por tanto, el padre de las ciencias modernas ya que sus ideas se basaban en experimentos.

MÉDICINA EN EL SIGLO XVI



El Renacimiento cambió la economía y la política europea en el siglo XV y de ahí se desprendió la comercialización y la información debida a la invención de la imprenta.

El equilibrio político entre el Papado y el Sacro Imperio permitió el auge de ciudades-estado en el norte de Italia y la concentración en ellas de una economía artesanal y mercantil en expansión.

También se produjo allí el florecimiento de Universidades y centros del conocimiento, con la acogida masiva de griegos que abandonaron Constantinopla tras su caída en poder de los turcos en 1453.

La Italia del siglo XVI atrajo a tal cantidad de intelectuales que posibilitó el cambio y la ruptura con el modo de pensar previo. Astronomía, ingeniería, matemáticas, química, medicina, escultura, etc., experimentaron mayores cambios que en la totalidad de los siglos precedentes. En la Italia renacentista cambia el concepto del universo (Galileo), se edifica la cúpula de la Catedral de Florencia (Brunelleschi) y Miguel Angel esculpe el David. En lo referente a la anatomía, en ese momento y lugar coincidieron tal cantidad de observadores y científicos, que tanto con su labor individual como colectiva, pudieron romper con la teleología galénica imperante hasta la fecha.

Este conocimiento anatómico fue el motor de las ciencias médicas en general y de la cirugía en particular.

CAPA DE OZONO


Se denomina capa de ozono, u ozonosfera, a la zona de la estratosfera terrestre que contiene una concentración relativamente alta de ozono. Esta capa, que se extiende aproximadamente de los 15 km a los 40 km de altitud, reúne el 90% del ozono presente en la atmósfera y absorbe del 97% al 99% de la radiación ultravioleta de alta frecuencia.

La capa de ozono fue descubierta en 1913 por los físicos franceses Charles Fabry y Henri Buisson. Sus propiedades fueron examinadas en detalle por el meteorólogo británico G.M.B. Dobson, quien desarrolló un sencillo espectrofotómetro que podía ser usado para medir el ozono estratosférico desde la superficie terrestre. Entre 1928 y 1958 Dobson estableció una red mundial de estaciones de monitoreo de ozono, las cuales continúan operando en la actualidad. La Unidad Dobson, una unidad de medición de la cantidad de ozono, fue nombrada en su honor.

¿QUÉ ES LIBERTAD SINTÓTICA?

Una de las propiedades básicas de la teoría es la libertad asintótica: a cortas distancias, las partículas cargadas son prácticamente libres. Sin embargo, cuando las distancia entre ellas aumenta, la interacción que las mantiene juntas también aumenta. Esto contrasta fuertemente con el carácter de otras interacciones como la electromagnética y la gravitatoria, que disminuyen con la distancia.

Este comportamiento anómalo de la cromodinámica cuántica se debe a que los mediadores de la interacción (los gluones), son capaces de interactuar entre ellos. Esto contrasta con la interacción electromagnética cuyos mediadores, los fotones, no interactúan entre ellos.

¿QUÉ ES CROMODINÁMICA CUÁNTICA?

La cromodinámica cuántica es una teoría de gauge que describe la interacción entre quarks y gluones. Los quarks son los fermiones de esta teoría y desempeñan un papel análogo a los electrones y neutrinos del modelo electrodébil, los gluones son los bosones de gauge de la teoría, y despeñan un papel análogo a los fotones en la QED.

Según esta teoría, el carácter de la interacción fuerte está determinado por una simetría especial entre las cargas de color de los quarks. Se conoce a esta simetría como el grupo de gauge SU(3) y los quarks se transforman bajo este grupo como tripletes SU(3) de campos fermiónicos de Dirac. Aunque las expansiones perturbativas eran importantes para el desarrollo de la QCD, esta también predice muchos efectos no perturbativos tales como confinamiento, condensados fermiónicos e instantones.

Un enfoque particular a la QCD, a saber los modelos de red, ha permitido a los investigadores obtener algunos resultados y cantidades teóricas que eran previamente incalculables.